Ta có : 3 - |x - 2017| - (x - 2017)2
= 3 - [|x - 2017| + (x - 2017)2 ]
Mà \(\left|x-2017\right|\ge0\forall x\)
\(\left(x-2017\right)^2\ge0\forall x\)
=> [|x - 2017| + (x - 2017)2 ] \(\ge0\forall x\)
Nên : 3 - [|x - 2017| + (x - 2017)2 ] hay 3 - |x - 2017| - (x - 2017)2 \(\le3\forall x\)
Vậy GTLN của biểu thức là 3 khi và chỉ khi x = 2017
-A = (x-2017)^2 + /x-2017/ - 3
= (/x-2017/+1/2)^2 - 7/2
>= -7/2
=> A <= 7/2
Dấu "=" xảy ra <=> x-2017 = 0 <=> x= 2017
Vậy Max A= 7/2 <=> x= 2017