Bài 4: Hai mặt phẳng vuông góc

H24

undefined

giúp em với em cảm ơn nhiềuuuu

NL
5 tháng 4 2022 lúc 15:03

Kẻ \(AE\perp BD\) , \(AF\perp SE\Rightarrow AF\perp\left(SBD\right)\)

Dễ dàng chứng minh \(AD\perp\left(SAB\right)\) ; \(AB\perp\left(SAD\right)\) 

Từ đó ta có: \(\alpha=\widehat{FAD}\) ; \(\beta=\widehat{FAB}\) ; \(\gamma=\widehat{FAS}\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{2}{a^2}+\dfrac{1}{b^2}=\dfrac{a^2+2b^2}{a^2b^2}\)

\(\Rightarrow AF=\dfrac{ab}{\sqrt{a^2+2b^2}}\)

\(\Rightarrow T=cos\alpha+cos\beta+cos\gamma=\dfrac{AF}{AD}+\dfrac{AF}{AB}+\dfrac{AF}{AS}=\dfrac{ab}{\sqrt{a^2+2b^2}}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow T=\dfrac{\sqrt{3}ab}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\left(\dfrac{a+2b}{ab}\right)\le\dfrac{\sqrt{3}ab}{a+2b}\left(\dfrac{a+2b}{ab}\right)=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Bình luận (0)
NL
5 tháng 4 2022 lúc 15:03

undefined

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
DN
Xem chi tiết
DK
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
TK
Xem chi tiết
DN
Xem chi tiết
TR
Xem chi tiết
HT
Xem chi tiết