Gọi số đó là \(\overline{abcd}\left(a,b,c,d\in N< 10\right)\)
Ta có \(\overline{abcd}-\overline{ab}=5544\)
\(\Rightarrow100\times\overline{ab}+\overline{cd}-\overline{ab}=5544\\ \Rightarrow\overline{cd}=5544-99\overline{ab}\\ \Rightarrow\overline{cd}=99\left(56-\overline{ab}\right)\)
Ta thấy \(\overline{cd}< 100\) nên \(99\left(56-\overline{ab}\right)< 100\)
Do đó \(\left[{}\begin{matrix}56-\overline{ab}=1\\56-\overline{ab}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overline{ab}=55\\\overline{ab}=56\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overline{cd}=99\\\overline{cd}=00\end{matrix}\right.\)
Vậy số cần tìm là \(5599;5600\)
Ta có: \(\overline{abcd}-\overline{ab}=5544\)
\(\overline{abcd}=\overline{ab}+5544\)
\(\overline{ab}\times100+\overline{cd}=\overline{ab}+5544\)
\(\overline{ab}\times99+\overline{cd}=5544\)
\(\Rightarrow\overline{cd}=5544-\overline{ab}\times99\)
\(\Rightarrow\overline{cd}=56\times99-\overline{ab}\times99\)
\(\Rightarrow\overline{cd}=99\left(56-\overline{ab}\right)\)
Vì \(\overline{cd}< 100\) \(\Rightarrow99\left(56-\overline{ab}\right)< 100\)
\(\Rightarrow\overline{ab}=56;55\)
Có 2 TH:
TH1: \(\overline{ab}=56\Rightarrow\overline{cd}=00\left(tm\right)\)
TH2: \(\overline{ab}=55\Rightarrow\overline{cd}=99\left(tm\right)\)
Vậy số đó là 5599, 5600