Với 0 < m < 1
\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}=\sqrt{m}-\left(1-\sqrt{m}\right)=\sqrt{m}-1+\sqrt{m}=2\sqrt{m}-1\)
\(5,=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\\ =\sqrt{m}-\left|\sqrt{m}-1\right|\\ =\sqrt{m}-\sqrt{m}+1\\ =1\)
5) \(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
\(=\sqrt{m}-\sqrt{\sqrt{m^2}-2\sqrt{m}+1^2}\)
\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\)
\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)
\(=\sqrt{m}-\sqrt{m}+1\)
\(=1\)
\(5.\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\left(0< m< 1\right)\)
\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)
\(=\sqrt{m}-1+\sqrt{m}\)
\(=2\sqrt{m}-1\)