TM

GIÚP EM BÀI 1,2,3,4, VỚI Ạ,4H CHIỀU PHẢI NỘP RÒI Ạundefined

HN
7 tháng 10 2021 lúc 16:09

Bài 1:

c) \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{8-2\sqrt{7}} + \sqrt{2} \)

⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{(\sqrt{7})^2 - 2\sqrt{7}+1} + \sqrt{2} \)

⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{(\sqrt{7}-1)^2} + \sqrt{2} \)do 

⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - |\sqrt{7}-1| + \sqrt{2} \)

⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{7}+1 + \sqrt{2} \)   (do \(\sqrt{7} > 1 \))

⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - (\sqrt{7} - \sqrt{2}) +1 \)

⇔ \(C=\dfrac{5-(\sqrt{7} - \sqrt{2})(\sqrt{7}+\sqrt{2})}{\sqrt{7}+\sqrt{2}} +1 \)

⇔ \(C=\dfrac{5-7+2}{\sqrt{7}+\sqrt{2}} +1 =\dfrac{0}{\sqrt{7}+\sqrt{2}} +1 \)

⇔ \(C = 0 + 1 = 1\)

Vậy \(C=1\)

Bình luận (0)
HN
7 tháng 10 2021 lúc 16:22

Bài 3: 

c) Ta có: \(M=\dfrac{Q}{P} \)

⇔ \(M=\dfrac{\dfrac{\sqrt{x}}{\sqrt{x}-2}}{\dfrac{\sqrt{x}+5}{\sqrt{x}-2} } \)

⇔ \(M=\dfrac{\sqrt{x}}{\sqrt{x}+5} \)

Mà:  \(M<\dfrac{1}{2} \) ⇔ \(\dfrac{\sqrt{x}}{\sqrt{x}+5} <\dfrac{1}{2} \)

⇒ \(2\sqrt{x} < \sqrt{x}+5 \) (nhân 2 vế với \(2.(\sqrt{x} +5) >0\))

⇔ \(\sqrt{x}<5 \) ⇔ \(x<25\)

Kết hợp điều kiện ban đầu, ta đc:

Vậy khi \(0≤x<25\) và \(x≠4\) thì \(M=\dfrac{Q}{P} < \dfrac{1}{2} \)

 

Bình luận (0)
HN
7 tháng 10 2021 lúc 16:33

Bài 3:

d) \(M= \dfrac{\sqrt{x}}{\sqrt{x}+5} \)

⇔ \(M= \dfrac{\sqrt{x}+5-5}{\sqrt{x}+5}=M= 1-\dfrac{5}{\sqrt{x}+5} \)

M đạt giá trị nguyên khi: \(x∈Z \) và \(\dfrac{5}{\sqrt{x}+5} ∈Z \)

\(\dfrac{5}{\sqrt{x}+5} ∈Z \) khi \((\sqrt{x}+5) ∈ Ư_{5}\)

Mà \(\sqrt{x}+5>0\) nên ta có bảng sau: 

 \(\sqrt{x}+5\)      1       5
       \(x\)    Loại       0 (TM)

Vậy \(x=0\) thì \(M\) nhận giá trị nguyên

 

 

 

 

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
CB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
DT
Xem chi tiết
MT
Xem chi tiết