DN

Giúp e với

MY
24 tháng 2 2022 lúc 14:35

\(B1:a;M=\dfrac{A}{B}=\dfrac{\dfrac{x+12}{\sqrt{x}-1}}{\dfrac{\sqrt{x}+2}{\sqrt{x}-1}}=\dfrac{x+12}{\sqrt{x}+2}=4+\dfrac{x-4\sqrt{x}+4}{\sqrt{x}+2}=4+\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+2}\ge4\Rightarrow min=4\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\left(tm\right)\)

\(b,\dfrac{A}{B}=\dfrac{\left(x+2\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x}{\sqrt{x}-1}>1\Leftrightarrow\dfrac{x}{\sqrt{x}-1}-1>0\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(do:x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

\(3;M=\dfrac{B}{A}=\dfrac{x-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

\(\Rightarrow\dfrac{1}{m}-\dfrac{\sqrt{x}+1}{8}\ge1\Leftrightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Leftrightarrow\dfrac{16\sqrt{x}-\left(\sqrt{x}+1\right)^2-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\Rightarrow16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8\ge0\Leftrightarrow6\sqrt{x}-x-9\ge0\Leftrightarrow-\left(x-6\sqrt{x}+9\right)\ge0\Leftrightarrow\left(\sqrt{x}-3\right)^2\le0\Leftrightarrow x=9\left(tm\right)\)

\(\)\(d;đk:x\ge0;x\ne4\Rightarrow P=A.B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(\Rightarrow\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\right|>\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(TH1:\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\ge0\Leftrightarrow\sqrt{x}-1\ge0\Leftrightarrow x\ge1\left(x\ne4\right)\Rightarrow\)

\(P>P\left(vô-lý\right)\)

\(TH2:P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow0\le x< 1\)

\(\Rightarrow-P>P\Leftrightarrow-2P>0\Leftrightarrow P< 0\Leftrightarrow0\le x< 1\)

 

Bình luận (1)

Các câu hỏi tương tự
NN
Xem chi tiết
DT
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
PN
Xem chi tiết