Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là:
A. Trọng tâm tam giác
B. Trực tâm tam giác
C. Tâm đường tròn ngoại tiếp tam giác
D. Tâm đường tròn nội tiếp tam giác
Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là: A. 20cm B. 5cm C. 10cm D. 15cm Câu 4: Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Độ dài đường trung tuyến AM là: A. 12cm B. 10cm C. 8cm D. 6cm Câu 5: Trong một tam giác, điểm cách đều ba cạnh là: A. Giao điểm ba đường trung tuyến B. Giao điểm của ba đường trung trực C. Giao điểm ba đường phân giác D. Giao điểm ba đường cao Câu 6: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là: A. Tam giác vuông B. Tam nhọn C. Tam giác cân D. Tam giác tù Câu 7: Cho tam giác ABC, M là trung điểm của BC, G là trọng tâm của tam giác ABC và AM=18cm. Độ dài đoạn AG là: A. 12cm B. 6cm C. 9cm D. 10cm Câu 8: Cho tam giác ABC cân tại A, các đường trung tuyến BC và CE cắt nhau tại G. Chọn khẳng định đúng trong các khẳng định sau: A. AG là tia phân giác của góc A của tam giác ABC B. AG là đường trung trực của BC của tam giác ABC C. AG là đường cao của tam giác ABC D. Cả ba khẳng định đều đúng Câu 9: Cho tam giác ABC cân tại A, BC = 10cm. Độ dài đường trung tuyến AM bằng 12cm. Khi đó độ dài AB là A. 12cm B. 13cm C. 11cm D. 10cm Câu 10: Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm A. Nằm bên trong tam giác B. Nằm bên ngoài tam giác C. Là trung điểm của cạnh huyền BC D. Trùng với điểm A Câu 11: Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là: A. 6cm B. 4cm C. 3cm D. 5cm
Câu 1: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là: A. Trọng tâm tam giác B. Trực tâm tam giác C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác Câu 2: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là: A. 8cm B. √54cm C. √44cm D. 6cm Câu 3: Cho tam giác ABC, M là trung điểm của AC, G là trọng tâm của tam giác ABC và GM = 5cm. Độ dài đoạn BG là: A. 20cm B. 5cm C. 10cm D. 15cm Câu 4: Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Độ dài đường trung tuyến AM là: A. 12cm B. 10cm C. 8cm D. 6cm Câu 5: Trong một tam giác, điểm cách đều ba cạnh là: A. Giao điểm ba đường trung tuyến B. Giao điểm của ba đường trung trực C. Giao điểm ba đường phân giác D. Giao điểm ba đường cao Câu 6: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là: A. Tam giác vuông B. Tam nhọn C. Tam giác cân D. Tam giác tù Câu 7: Cho tam giác ABC, M là trung điểm của BC, G là trọng tâm của tam giác ABC và AM=18cm. Độ dài đoạn AG là: A. 12cm B. 6cm C. 9cm D. 10cm Câu 8: Cho tam giác ABC cân tại A, các đường trung tuyến BC và CE cắt nhau tại G. Chọn khẳng định đúng trong các khẳng định sau: A. AG là tia phân giác của góc A của tam giác ABC B. AG là đường trung trực của BC của tam giác ABC C. AG là đường cao của tam giác ABC D. Cả ba khẳng định đều đúng Câu 9: Cho tam giác ABC cân tại A, BC = 10cm. Độ dài đường trung tuyến AM bằng 12cm. Khi đó độ dài AB là A. 12cm B. 13cm C. 11cm D. 10cm Câu 10: Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm A. Nằm bên trong tam giác B. Nằm bên ngoài tam giác C. Là trung điểm của cạnh huyền BC D. Trùng với điểm A Câu 11: Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là: A. 6cm B. 4cm C. 3cm D. 5cm
Xét các khẳng định sau. Tìm khẳng định đúng. Ba đường trung trực của một tam giác đồng qui tại một điểm gọi là:
A. Trọng tâm của tam giác
B. Tâm đường tròn ngoại tiếp
C. Trực tâm của tam giác
D. Tâm đường tròn nội tiếp
tâm đường tròn ngoại tiếp tam giác ABC là giao điểm của :
A) 3 đường trung tuyến
B) 3 đường cao
C) 3 đường phân giác
D) 3 đường trung trực
1) Cho MNP; góc M=40° Kẻ trực tâm H của tam giác MNP Kẻ tâm đường tròn nội tiếp I của tam giác MNP Kẻ tâm đường tròn ngoại tiếp J của MNP a) Tính góc NHP b) góc NIP c) góc NJP
Cho tam giác. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ABC là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác ABC.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt trung điểm của AB, AC và BC. Gọi O là giao điểm của ba đường phân giác trong tam giác ABC. Khi đó, tâm đường tròn ngoại tiếp tam giác ABC là:
A. O
B. D
C. E
D. F
Cho tam giác ABC vuông tại A. Gọi P, Q, K lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi O là giao điểm của ba đường phân giác của tam giác ABC. Khỉ đó tâm đường tròn ngoại tiếp tam giác ABC là:
A. O.
B. P.
C. Q.
D. R.
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O . Gọi D là trung điểm của AB , E là trọng tâm tam giác ACD . CMR OE vuông góc với CD