PH

Giair phương trình sau \(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)

\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)

\(PT:\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)

\(x-1=0\Leftrightarrow x=1\)

\(x-2=0\Leftrightarrow x=2\)

\(3x+2=0\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=2\\x=-\frac{2}{3}\end{cases}}\)

Bình luận (0)
HN
15 tháng 8 2019 lúc 15:19

\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)

\(\Leftrightarrow\left(x^2-4x+1\right)\left(x+1\right)+2\left(x+1\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)

\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)

\(\Leftrightarrow2x^3-3x^2+3+x^2-4x+1=0\)

\(\Leftrightarrow3x^2-7x^2+4=0\)

\(\Leftrightarrow\left(3x^2-4x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x^2+2x-6x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x\left(3x+2\right)-2\left(3x+2\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\x=2\\x=1\end{cases}}\)

vậy:...

Bình luận (0)

Các câu hỏi tương tự
CH
Xem chi tiết
AM
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
TV
Xem chi tiết
TD
Xem chi tiết
ZP
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết