Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải và biện luận phương trình: \(\frac{x-a}{a-4}+\frac{x+a-1}{a+4}+\frac{a-x}{a^2-16}=0\)
Bài 1: Giải phương trình
\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
Bài 2: Giải phương trình và biện luận theo m
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2.m}\)
Giải và biện luận phương trình:
a)\(\frac{an}{a-x}+\frac{\left(a+n\right)\left(\text{anx}+nx^2+x^3\right)}{x^3+nx^2-a^2x-a^2n}=\frac{\text{ax}}{n+x}+\frac{nx^2}{x^2-a^2}\left(a\ne0\right)\)
b)\(\frac{a+x}{a^2+\text{ax}+x^2}-\frac{a-x}{\text{ax}-x^2-a^2}=\frac{3a}{2\left(a^4+a^2x^2+x^4\right)}\)
Giải và biện luận phương trình (m là tham số)
a,\(\frac{x-m}{x+5}+\frac{x+5}{x+m}=2\)
b,\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
giải và biện luận phương trình sau: x- a\(^2\)x - \(\frac{1}{1-x^2}\)+a=\(\frac{x^2}{x^2-1}\)
Cho phương trình ( ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận x=\(\frac{1}{2}\) là nghiệm
Cho phương trình (ẩn x, a là tham số)
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3a+1\right)}{a^2-x^2}\)
a) Giải phương trình với a=-3
b) Giải phương trình khi a=1
c) Tìm các giá trị của a để phương trình nhận \(x=\frac{1}{2}\)là nghiệm
Giải phương trình và biện luận theo m
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)