\(\left(x-a\right)^n=\left(a-1\right)^2\)
Nếu n lẻ thì \(x-a=\sqrt[n]{\left(a-1\right)^2}\) do đó \(x=a+\sqrt[n]{\left(a-1\right)^2}\)
Nếu n chẵn , \(n=2k\left(k\inℕ^∗\right)\) thì \(x-a=\pm\sqrt[2k]{\left(a-1\right)^2}\) vì \(\left(a-1\right)^1\ge0\) có 2 căn bậc hai đối nhau
Do đó: \(x=a\pm\sqrt[k]{|a-1|}\)
Nếu \(a\ge1\) thì \(x=a\pm\sqrt[k]{a-1}\)
Nếu a < 1 thì \(x=a\pm\sqrt[k]{1-a}\)
=.= hok tốt!!