\(x^2-6x+9=4.\sqrt{x^2-6x+6}\)\(ĐK:x^2-6x+6\ge0\)
Đặt \(\sqrt{x^2-6x+6}=t\)\(\left(ĐK:t\ge0\right)\)
\(\Leftrightarrow t^2=x^2-6x+6\)
\(\Leftrightarrow x^2-6x=t-6\)thay vào pt ta được :
\(\Leftrightarrow t^2-6+9=4t\)
\(\Leftrightarrow t^2-4t+3=0\)\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)
Với \(t=1\Rightarrow\sqrt{x^2-6x+6}=1\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=5\left(TM\right)\end{cases}}\)
Với \(t=3\Rightarrow\sqrt{x^2-6x+6}=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(TM\right)\end{cases}}\)