Violympic toán 9

H24

Giải pt:

\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)

NL
16 tháng 8 2021 lúc 20:11

ĐKXĐ: \(x\ne-1\)

\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)

\(\Rightarrow6x^2+4x+8=5\left(x+1\right)\sqrt{2x^2+3}\)

\(\Leftrightarrow2\left(2x^2+3\right)-5\left(x+1\right)\sqrt{2x^2+3}+2\left(x+1\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3}=a\\x+1=b\end{matrix}\right.\)

\(\Rightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2+3}=2\left(x+1\right)\\2\sqrt{2x^2+3}=x+1\end{matrix}\right.\) (\(x\ge-1\))

\(\Rightarrow\left[{}\begin{matrix}2x^2+3=4\left(x+1\right)^2\\4\left(2x^2+3\right)=\left(x+1\right)^2\end{matrix}\right.\) (\(x\ge-1\))

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
HL
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
KN
Xem chi tiết
KN
Xem chi tiết
NC
Xem chi tiết
NY
Xem chi tiết
KN
Xem chi tiết