Bài 5: Phương trình chứa ẩn ở mẫu

DT

Giải PT:

20(\(\dfrac{x-2}{x+1}\))2 - 5(\(\dfrac{x+2}{x-1}\))2 + 48\(\dfrac{x^2-4}{x^2-1}\) = 0

H24
27 tháng 2 2021 lúc 20:44

`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`

Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`

`pt<=>20a^2-5b^2+48ab=0`

`<=>20a^2+48ab-5b^2=0`

`<=>20a^2-2ab+50ab-5b^2=0`

`<=>2a(a-10b)+5b(10a-b)=0`

`<=>(a-10b)(2a+5b)=0`

Đến đây dễ rồi bạn tự giải tiếp.

Bình luận (0)
SA
27 tháng 2 2021 lúc 20:48

ĐKXĐ: x \(\ne\)\(\pm\)1

Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)

Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)

=> ab = \(\dfrac{x^2-4}{x^2-1}\)

Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0

<=> 20a2 + 50ab - 2ab - 5b2 = 0

<=> (10a - b)(2a + 5b) = 0

<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)

TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)

<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)

<=> 10x2 - 30x + 20 = x2 + 3x + 2

<=> 9x2 - 33x + 18 = 0

<=> 9x2 - 27x - 6x + 18 = 0

<=> (9x - 6)(x - 3) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)

TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)

=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)

<=> 2x2 - 6x + 4 = -5x2 - 15x - 10

<=> 7x2 + 9x + 14 = 0

=> pt vn

Bình luận (0)

Các câu hỏi tương tự
EC
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
TM
Xem chi tiết
QN
Xem chi tiết
GH
Xem chi tiết
BT
Xem chi tiết