TM

Giải PT; (x+3)4 + (x+5)4 =2

PN
13 tháng 2 2016 lúc 12:36

Giải phương trình:

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)  \(\left(\text{1}\right)\)

Đặt  \(y=x+4\), khi đó phương trình \(\left(\text{1}\right)\)  trở thành:

\(\left(y-1\right)^4+\left(y+1\right)^4=2\)

\(\Leftrightarrow\)  \(y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=2\)

\(\Leftrightarrow\)  \(2y^4+12y^2+2=2\)

\(\Leftrightarrow\)  \(y^4+6y^2+1=1\)

\(\Leftrightarrow\)  \(y^4+6y^2+9-9=0\)

\(\Leftrightarrow\)  \(\left(y^2+3\right)^2-3^2=0\)

\(\Leftrightarrow\)  \(y^2\left(y^2+6\right)=0\)  \(\left(\text{1'}\right)\)

Vì  \(y^2\ge0\)  nên  \(y^2+6\ge6>0\)  nên từ \(\left(\text{1'}\right)\)  suy ra  \(y^2=0\), tức là \(\left(x+4\right)^2=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  \(x=-4\)

Vậy, tập nghiệm của pt là  \(S=\left\{-4\right\}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
1N
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
TH
Xem chi tiết
KK
Xem chi tiết
NN
Xem chi tiết