ĐKXĐ \(x \ge 0\)
+Xét x = 2 ta thấy là nghiệm của pt.
+Xét x > 2 ta thấy vế phải của pt lớn hơn vế trái nên suy ra vô nghiệm
+Xét 0 ≤ x < 2 ta thấy vế phải của pt nhỏ hơn vế trái nên pt cũng vô nghiệm
Kết luận: .................
trình bày ra đc ko bn!? xét x=2 thế nào đc!
Dễ thấy, nếu x < 0: \(VT = \sqrt{x^2 + 5} + 3x < \sqrt{x^2 + 12} < \sqrt{x^2 + 12} + 5\)
Phương trình vô nghiệm. Vậy x ≥ 0
Phương trình ban đầu tương đương:
\((\sqrt{x^2 + 5} - 3) - (\sqrt{x^2 + 12} - 4) + 3x - 6 = 0\)
\(\Leftrightarrow \dfrac{x^2 - 4}{\sqrt{x^2 + 5} + 3} - \dfrac{x^2 - 4}{\sqrt{x^2 + 12} + 4} + 3(x - 2) = 0\)
\(\Leftrightarrow (x - 2)[\dfrac{x + 2}{\sqrt{x^2 + 5} + 3} - \dfrac{x + 2}{\sqrt{x^2 + 12} + 4} + 3] = 0\)
\(\Leftrightarrow \left[\begin{array}{l} x = 2\\\dfrac{x + 2}{\sqrt{x^2 + 5} + 3} - \dfrac{x + 2}{\sqrt{x^2 + 12} + 4} + 3 = 0\,\,\,\, (2)\end{array}\right.\)
Ta có :
\((2) \Leftrightarrow (x + 2)[\dfrac{1}{\sqrt{x^2 + 5} + 3} - \dfrac{1}{\sqrt{x^2 + 12} + 4}] + 3 = 0\)
\(\Leftrightarrow (x + 2).\dfrac{\sqrt{x^2 + 12} - \sqrt{x^2 + 5} + 1}{(\sqrt{x^2 + 5} + 3)(\sqrt{x^2 + 12} + 4)} = 0\)
Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.
Vậy phương trình ban đầu có nghiệm duy nhất x = 2.