TT

Giải Pt :

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)

HH
16 tháng 12 2015 lúc 23:24

\(\left(\sqrt{x^2+2x}+\sqrt{2x-1}\right)^2=3x^2+4x+1\)

\(x^2+4x-1+2\sqrt{2x^3+3x^2-2x}=3x^2+4x+1\)

\(2\sqrt{2x^3+3x^2-2x}=2x^2+2\)

\(\sqrt{2x^3+3x^2-2x}=x^2+1\)

\(2x^3+3x^2-2x=x^4+2x^2+1\)

\(x^4-2x^3-x^2+2x+1=0\)

pt đối xứng bậc 4 tự làm được chưa?

Bình luận (0)
HH
16 tháng 12 2015 lúc 23:54

\(\left(\sqrt{x^2+2x}+\sqrt{2x+1}\right)^2=3x^2+4x+1\)

\(x^2+4x-1+2\sqrt{2x^3+3x^2-2x}=3x^2+4x+1\)

\(\sqrt{2x^3+3x^2+2x}=x^2+1\)

\(2x^3+3x^2+2x=x^4+2x^2+1\)

\(x^4-2x^3-x^2+2x+1=0\)

\(\left(x^2-x-1\right)^2=0\)

\(x^2-x-1=0\)

\(x^2-x+\frac{1}{4}-\frac{5}{4}=0\)

\(\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(x-\frac{1}{2}=\frac{\sqrt{5}}{2}\)

\(x=\frac{1+\sqrt{5}}{2}\)

lên thánh nhé

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
NT
Xem chi tiết
TQ
Xem chi tiết
PH
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
LC
Xem chi tiết
DB
Xem chi tiết