trieu dang giải sai ĐKXĐ rồi.
\(\text{ĐK: }\frac{3x+1}{x+3}\ge0\)
\(pt\Leftrightarrow\frac{3x+1}{x+3}=7\Leftrightarrow3x+1=7\left(x+3\right)\Leftrightarrow x=-5\text{ (thỏa ĐKXĐ)}\)
Kết luận: x = -5.
trieu dang giải sai ĐKXĐ rồi.
\(\text{ĐK: }\frac{3x+1}{x+3}\ge0\)
\(pt\Leftrightarrow\frac{3x+1}{x+3}=7\Leftrightarrow3x+1=7\left(x+3\right)\Leftrightarrow x=-5\text{ (thỏa ĐKXĐ)}\)
Kết luận: x = -5.
1/giải pt \(x^2+3x\sqrt[3]{3x+2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
giải pt \(10+\sqrt{3}x^3+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3}x^3+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
giải pt
\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
b) \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\frac{x-1}{x-2}}=3\)
giải pt \(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}x+\frac{2}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}x\)
Giải pt: \(\frac{3+x}{3x}=\sqrt{\frac{1}{9}+\frac{1}{x}\sqrt{\frac{4}{9}+\frac{2}{x^2}}}\)
giải pt:
1) \(4\sqrt{\frac{x^2}{3}+4}=1+\frac{3x}{2}+\sqrt{6x}\)
2) \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
3) \(\sqrt{1+x}+\sqrt{1-x}+\frac{x^2}{4}=2\)
Giải Pt :
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
1) giải hệ pt \(\hept{\begin{cases}x+y=\sqrt{xy}+3\\\sqrt{x^2+7}+\sqrt{y^2+7}=8\end{cases}}\)
giải pt x^4 +(x-1)(3x^2 +2x-2)=0
tìm m để x(x-2)(x+2)(x+4) =m có 4 nghiệm phân biệt
cho a,b,c>0 thỏa \(a^2+b^2+c^2=3.CM:3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge15\)