đặt đúng theo thứ tự đề bài là a;b;c;d(a;c>0)
\(\Rightarrow a^2+b^3=c^2+d^3\)
theo đề bài ta có: a-b=c-d=>a-c=b-d
ta đc hpt:\(\int^{a^2+b^3=c^2+d^3}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d^2+bd+b^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c+b^2+b+d^2\right)=0\left(1\right)}_{a-c=b-d}\)
\(b^2+bd+d^2=\left(b+\frac{1}{2}d\right)^2+\frac{3}{4}d^2\ge0\)
Dấu "=" xảy ra <=> b=d=0
vì a;c>0 nên a+c>0
Dấu "=" xảy ra <=> a=c=0
=> \(a+c+b^2+bc+d^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=d=0 -> vô nghiệm
Từ (1) => a=c rồi tự làm tiếp
Giải phương trình ra nhé phantuananh
Đặt a,b,b,c theo thứ tự nhé
\(a-b=c-d;a^2+b^3=c^2+d^3\)
\(a-c=b-d;\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c+b^2+bd+d^2\right)=0\)
\(a-c=0\)vì cái kia >0 nhưng dấu "=" xảy ra không đồng thời với giác trị của x
Tự giải tiếp
\(\)