Đặt \(\sqrt{2x+3+\sqrt{x+2}}=a;\sqrt{2x+2-\sqrt{x+2}}=b\) ( \(a;b\ge0\))
=> a2 - b2 = \(1+2\sqrt{x+2}\).
PT <=> a + b = a2 - b2 <=> (a + b)(a - b - 1) = 0 <=> a + b = 0 hoặc a - b = 1
+) a + b = 0. Vì \(a;b\ge0\) nên a = b = 0 . Mà a > b => a = b = 0 loại
+) a - b = 1 <=> \(\sqrt{2x+3+\sqrt{x+2}}-\sqrt{2x+2-\sqrt{x+2}}=1\)
<=> \(\left(\sqrt{2x+3+\sqrt{x+2}}\right)^2=\left(1+\sqrt{2x+2-\sqrt{x+2}}\right)^2\)
<=> \(2x+3+\sqrt{x+2}=1+2x+2-\sqrt{x+2}+2\sqrt{2x+2-\sqrt{x+2}}\)
<=> \(\sqrt{x+2}=\sqrt{2x+2-\sqrt{x+2}}\)
<=> \(x+2=2x+2-\sqrt{x+2}\)
<=> \(\sqrt{x+2}=x\)
<=> x + 2 = x2 ( x > = 0 )
<=> x2 - x - 2 = 0 <=> x = -1 hoặc x = 2
x = 2 thỏa mãn
Vậy x = 2 là nghiệm của PT
Đặt \(\sqrt{2x+3+\sqrt{x+2}}=a;\sqrt{2x+2-\sqrt{x+2}}=b\left(a;b\ge0\right)\)
\(\Rightarrow a^2-b^2=1+2\sqrt{x+2}\)
PT\(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\Leftrightarrow a+b=0\)hoặc \(a-b=1\)
+) \(a+b=0\). Vì \(a;b\ge0\)nên \(a=b=0\). Mà \(a>b\Rightarrow a=b=0\) (loại)
+) \(a-b=1\Leftrightarrow\sqrt{2x+3+\sqrt{x+2}}-\sqrt{2x+2-\sqrt{x+2}}=1\)
\(\Leftrightarrow\left(\sqrt{2x+3+\sqrt{x+2}}\right)^2=\left(1+\sqrt{2x+2-\sqrt{x+2}}\right)^2\)
\(\Leftrightarrow2x+3+\sqrt{x+2}=1+2x+2-\sqrt{x+2}+2\sqrt{2x+2-\sqrt{x+2}}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{2x+2-\sqrt{x+2}}\)
\(\Leftrightarrow x+2=2x+2-\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x+2}=x\)
\(\Leftrightarrow x+2=x^2\left(x>=0\right)\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow x=-1\)hoặc \(x=2\)
\(x=2\)thỏa mãn.
Vậy \(x=2\)là nghiệm của PT.
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=2x+\sqrt{x^2+4x+3}\)