a) \(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x^2+1\right)=0\left(1\right)\end{cases}}\)
Giải (1) : \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\end{cases}}\)
Mà \(x^2\)>0
\(\Rightarrow\)pt vô nghiệm
Vậy \(x\in\left(-3;1\right)\)
\(\)