TB

Giải pt nghiệm nguyên dương: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

H24
13 tháng 5 2019 lúc 21:53
😴😴😴😴😴😴😴
Bình luận (0)
H24
13 tháng 5 2019 lúc 23:16

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
DT
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
NV
Xem chi tiết