\(\Leftrightarrow4\left(2x^2+1\right)+10x=5y^2\)
Do \(10x\) và \(5y^2\) đều chia hết cho 5 \(\Rightarrow2x^2+1⋮5\)
- Nếu \(x⋮5\Rightarrow2x^2+1\) chia 5 dư 1 (ktm)
- Nếu x chia 5 dư 1 hoặc 4 \(\Rightarrow x^2\) chia 5 dư 1 \(\Rightarrow2x^2+1\) chia 5 dư 3 (ktm)
- Nếu x chia 5 dư 2 hoặc 3 \(\Rightarrow x^2\) chia 5 dư 4 \(\Rightarrow2x^2+1\) chia 5 dư 4 (ktm)
Vậy không tồn tại x thỏa mãn hay pt đã cho ko có nghiệm nguyên