ĐKXĐ: \(x\ge2\)
Đặt \(\sqrt{x+1}=a\), \(\sqrt{x-2}=b\)
Ta có hpt:
\(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=3\\a^2-b^2=3\end{cases}}\)\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow a+b=1+ab\)(Do a-b không thể bằng 0)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktmđkxđ\right)\\x=3\left(tmđkxđ\right)\end{cases}}}\Rightarrow x=3\)
Vậy nghiệm của pt trên là x=3