\(5\sqrt{2x^3+16}=2\left(x^2+8\right)\left(x>-2\right)\)
\(\Leftrightarrow20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2+8\right)\)
\(\Leftrightarrow2\left(x^2+8\right)-20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=0\)
\(\Leftrightarrow x^2+8-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)
\(\Leftrightarrow x^2-2x+4+2x+4-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)
Đặt a = \(\sqrt{x^2-2x+4}\left(a>0\right)\)
b = \(\sqrt{x+2}\left(b\ge0\right)\)
=> pt có dạng:
\(a^2-10ab+b^2=0\)
bạn phân tích rồi làm tiếp nhá