\(PT\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0.\)
\(\Leftrightarrow3\left(x^2+7x+7\right)+2\sqrt{x^2+7x+7}-5=0\)
Đặt \(a=\sqrt{x^2+7x+7}\)(a\(\ge\)0)
\(PT\Leftrightarrow3a^2+2a-5=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a+5\right)=0\)
Vì a\(\ge\)0 nên a-1=0=> a=1
lúc đó x2+7x+7=1
<=> x2+7x+6=0
<=> (x+1)(x+6)=0
<=> \(\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)
Vậy.................................