ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
\(\frac{3sin^2x}{cos^2x}+\frac{3\left(sinx+cosx\right)}{cos^2x}=1+4\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\frac{3sin^2x}{cos^2x}+\frac{3\left(sinx+cosx\right)}{cos^2x}=1+4\left(sinx+cosx\right)\)
\(\Leftrightarrow\frac{3-3cos^2x}{cos^2x}-1+\frac{3\left(sinx+cosx\right)}{cos^2x}-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\frac{3-4cos^2x}{cos^2x}+\left(sinx+cosx\right)\left(\frac{3-4cos^2x}{cos^2x}\right)=0\)
\(\Leftrightarrow\left(\frac{3-4cos^2x}{cos^2x}\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-4cos^2x=0\\sinx+cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\frac{3}{4}\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\cosx=\frac{-\sqrt{3}}{2}\\sin\left(x+\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)