Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

JE

giai pt

a) \(cos^3x-sin^3x=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)

b) \(\frac{1-tanx}{1+tanx}=1+2sinx\)

c) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)

NL
19 tháng 8 2020 lúc 1:14

a/

\(\Leftrightarrow cos^3x-sin^3x=cosx+sinx\)

- Với \(cosx=0\Rightarrow sinx=-1\Rightarrow x=-\frac{\pi}{2}+k2\pi\) là 1 nghiệm

- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow1-tan^3x=\frac{1}{cos^2x}+tanx.\frac{1}{cos^2x}\)

\(\Leftrightarrow1-tan^3x=1+tan^2x+tanx\left(1+tan^2x\right)\)

\(\Leftrightarrow2tan^3x+tan^2x+tanx=0\)

\(\Leftrightarrow tanx\left(2tan^2x+tanx+1\right)=0\)

\(\Leftrightarrow tanx=0\Rightarrow x=k\pi\)

Bình luận (0)
NL
19 tháng 8 2020 lúc 1:22

b/

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}=1+2sinx\)

\(\Leftrightarrow\frac{cosx-sinx}{cosx+sinx}=1+2sinx\)

\(\Leftrightarrow cosx-sinx=\left(1+2sinx\right)\left(cosx+sinx\right)\)

\(\Leftrightarrow sinx+sinx.cosx+sin^2x=0\)

\(\Leftrightarrow sinx\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx+cosx=-1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\left(l\right)\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
19 tháng 8 2020 lúc 1:26

c/

ĐKXĐ: ...

Chia 2 vế cho \(cos^2x\) ta được:

\(\left(1+tanx\right)tan^2x=3tanx\left(1-tanx\right)+3\left(1+tan^2x\right)\)

\(\Leftrightarrow tan^3x+tan^2x=3tanx-3tan^2x+3+3tan^2x\)

\(\Leftrightarrow tan^3x+tan^2x-3tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
JE
19 tháng 8 2020 lúc 0:58

Nguyễn Việt Lâm: giup mk vsss

Bình luận (0)
JE
19 tháng 8 2020 lúc 1:16

them cau nay voi

d) \(sin^3\left(x+\frac{\pi}{4}\right)=\sqrt{2}sinx\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
TY
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NP
Xem chi tiết