Đặt \(y=\frac{5-x}{x+1}\to xy\left(x+y\right)=6,y\left(x+1\right)=5-x\to xy\left(x+y\right)=6,xy+\left(x+y\right)=5.\)
Đặt \(a=xy,b=x+y\to ab=6,a+b=5\). Suy ra \(a,b\) là nghiệm của phương trình \(t^2-5t+6=0\to t=2,3\to a=2,b=3\) hoặc \(a=3,b=2.\)
Nếu \(a=2,b=3\to xy=2,x+y=3\to x,y\) là nghiệm cua phương trình \(t^2-3t+2=0\to t=1,2\to x=1,2.\)
Nếu \(a=3,b=2\) thì \(xy=3,x+y=2\to x,y\) là nghiệm phương trình \(t^2-2t+3=0,\) vô nghiệm.
Vậy \(x=1,2.\)