Answer:
\(\left(x^2+x+2\right).\left(x^2+x+3\right)=6\)
Ta có: \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall x\)
Ta đặt: \(a=x^2+x+2\left(a>0\right)\)
Lúc này phương trình trở thành:
\(a.\left(a+1\right)=6\)
\(\Rightarrow a^2+a=6\)
\(\Rightarrow a^2+a-6=0\)
\(\Rightarrow a^2+3a-2a-6=0\)
\(\Rightarrow a.\left(a+3\right)-2.\left(a+3\right)=0\)
\(\Rightarrow\left(a-2\right).\left(a+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=2\\a=-3\text{(Loại)}\end{cases}}\)
Với \(a=2\)
\(\Rightarrow x^2+x+2=2\)
\(\Rightarrow x^2+x+2-2=0\)
\(\Rightarrow x^2+x=0\)
\(\Rightarrow x.\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)