NV

Giai phương trình:

\(x+1+\sqrt{2x+3}=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}\)

BM
16 tháng 2 2019 lúc 21:57

ĐKXĐ: \(x>-\frac{3}{2}\)

\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)

Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)

\(\Rightarrow8x^2+18x+11=a^2+b^2\)

Khi đó, phương trình (1) trở thành:

\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)

\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)

Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!

HỌC TỐT!^_^

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
KN
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết