\(\left(x-8\right)\left(x-4\right)\left(x-2\right)\left(x-1\right)=270x^2\)
\(\Rightarrow\left(x-8\right)\left(x-1\right)\left(x-4\right)\left(x-2\right)-270x^2=0\)
\(\Rightarrow\left(x^2-9x+8\right)\left(x^2-6x+8\right)-270x^2=0\)
Đặt \(x^2-6x+8=t\), ta có phương trình mới: \(\left(t-3x\right)t-270x^2=0\)
\(\Leftrightarrow t^2-3xt-270x^2=0\)
Với x = 0, t = 8, phương trình không thỏa mãn. Vậy \(x\ne0\)
Chia cả hai vế cho x2, ta có: \(\left(\frac{t}{x}\right)^2-3\left(\frac{t}{x}\right)-270=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{t}{x}=18\\\frac{t}{x}=-15\end{cases}}\)
Với \(\frac{t}{x}=18\Rightarrow x^2-6x+8=18x\Rightarrow x^2-24x+8=0\Rightarrow x=12\pm2\sqrt{34}\)
Với \(\frac{t}{x}=-15\Rightarrow x^2-6x+8=-15x\Rightarrow x^2+9x+8=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-8\end{cases}}\)
Vậy phương trình có 4 nghiệm \(S=\left\{-8;-1;12-2\sqrt{34};12+2\sqrt{34}\right\}\)