VT

giải phương trình:\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

KT
2 tháng 1 2019 lúc 0:27

Gợi ý:

ĐK:  \(x\ge-5\)

pt  <=>  \(2\sqrt{2x^2+5x+12}+2\sqrt{2x^2+3x+2}=2x+10\)

<=> \(2x^2+5x+12+2\sqrt{2x^2+5x+12}+1-2x^2-3x-2+2\sqrt{2x^2+3x+2}-1=0\)

<=>  \(\left(\sqrt{2x^2+5x+12}+1\right)^2-\left(\sqrt{2x^2+3x+2}-1\right)^2=0\)

<=>  \(\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}+2\right)=0\)

đến đây bn giải từng trường hợp ra nhé

Bình luận (1)
H24
2 tháng 1 2019 lúc 8:51

Uầy , cách CTV Khánh làm đồ sộ vậy ? Bài này nhân liên hợp là ra mà . Và cái điều kiện x > -5 là điều kiện bình phương chớ ko phải ĐKXĐ đâu -.-

\(ĐKXĐ:x\in R\)

Vì VT > 0 nên VP > 0

            <=> x + 5 > 0

           <=> x > -5

Ta có: \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

\(\Leftrightarrow\frac{\left(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}\right)\left(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2x^2+5x+12-2x^2-3x-2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2x+10}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}=x+5\)

\(\Leftrightarrow\frac{2\left(x+5\right)}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}-1\right)=0\)

                        |_____________________A______________________|

Vì \(A>0\forall x\ge5\)

Nên x + 5 = 0

<=> x = -5 (Tm ĐKXĐ)
 

Bình luận (0)
KT
2 tháng 1 2019 lúc 11:46

Incursion_03 CTV

bạn ơi:  \(x=-5\)  thì:

\(\frac{2}{\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}}\) ko xác định do: 

\(\sqrt{2x^2+5x+12}-\sqrt{2x^2+3x+2}=\sqrt{2\left(-5\right)^2+5\left(-5\right)+12}-\sqrt{2.\left(-5\right)^2+3.\left(-5\right)+2}\)

\(=\sqrt{2.25-25+12}-\sqrt{2.25-10+2}=\sqrt{37}-\sqrt{37}=0\)

Bình luận (0)