LN

giải phương trình

\(\left(x+1\right)\sqrt{x+2}+\left(x+6\right)\sqrt{x+7}=x^2+7x+12\)

TK
30 tháng 7 2019 lúc 21:08

ĐK \(x\ge-2\)

pT<=> \(2\left(x+1\right)\sqrt{x+2}+2\left(x+6\right)\sqrt{x+7}=2x^2+14x+24\)

<=>\(\left(x+1\right)\left(x+2-2\sqrt{x+2}\right)+\left(x+6\right)\left(x+4-2\sqrt{x+7}\right)+x-2=0\)

<=>\(\frac{\left(x+1\right)\left(x^2-4\right)}{x+2+2\sqrt{x+2}}+\frac{\left(x+6\right)\left(x^2+4x-12\right)}{x+4+2\sqrt{x+7}}+x-2=0\forall x>-2\)

=> \(\orbr{\begin{cases}x=2\\\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}\end{cases}}+\frac{x+6}{x+4+2\sqrt{x+7}}+1=0\left(2\right)\)

Pt (2) + \(x\ge-1\)=> \(VT>0\)=> PT (2) vô nghiệm

+  \(-2< x\le-1\)=> \(\frac{\left(x+1\right)\left(x+2\right)}{x+2+2\sqrt{x+2}}>-1\)=> \(VT>0\)=> PT vô nghiệm

Vậy x=2

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
HT
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
VS
Xem chi tiết