ĐKXĐ \(x^2-2x-1\ge0\)
Đặt \(\sqrt{x^2-2x-1}=a,\sqrt[3]{x^3-14}=b\left(a>0\right)\)
=> \(b^3-6a^2=x^3-14-6x^2+12x+6=x^3-6x^2+12x-8=\left(x-2\right)^3\)
Khi đó phương trình tương đương
\(2a+b=\sqrt[3]{b^3-6a^2}\)
<=>:\(\left(2a+b\right)^3=b^3-6a^2\)
<=>\(8a^3+6a^2+12a^2b+6ab^2=0\)
<=> \(\orbr{\begin{cases}a=0\\4a^2+3a+6ab+3b^2=0\left(2\right)\end{cases}}\)
Phương trình (2)
<=>\(3\left(a+b\right)^2+a^2+3a=0\)
Mà \(a\ge0\)
=> \(\hept{\begin{cases}a=0\\b=0\end{cases}}\)(vô nghiệm)
+a=0
=> \(x^2-2x-1=0\)
Vậy \(S=\left\{\sqrt{2}+1;-\sqrt{2}+1\right\}\)