HM

Giải phương trình:

\(2\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)

TC
22 tháng 2 2022 lúc 20:21

Phương pháp:

Đặt \(x+\dfrac{1}{x}=a\Rightarrow a^2=x^2+\dfrac{1}{x^2}+2\Leftrightarrow a^2-2=x^2+\dfrac{1}{x^2}\)

Thay vào pt

Bình luận (0)
MY
22 tháng 2 2022 lúc 20:34

\(x\ne0:đặt:x+\dfrac{1}{x}=t\)

\(pt\Leftrightarrow2t^2+4\left(t^2-2\right)^2-4\left(t^2-2\right)t^2=\left(x+4\right)^2\)

\(\Leftrightarrow2t^2+4\left(t^4-4t^2+4\right)-4\left(t^4-2t^2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow2t^2+4t^4-16t^2+16-4t^4+8t^2=\left(x+4\right)^2\)

\(\Leftrightarrow-6t^2+16=\left(x+4\right)^2\)

\(\Leftrightarrow-6\left(x^2+2+\dfrac{1}{x^2}\right)+16=x^2+8x+16\)

\(\Leftrightarrow-6x^2-\dfrac{6}{x^2}-x^2-8x-12=0\Leftrightarrow-6x^4-x^4-8x^3-12x^2-6=0\Leftrightarrow-7x^4-8x^3-12x^2-6=0\left(vô-nghiệm\right)\)

(bn xem lại đề)

Bình luận (1)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NV
Xem chi tiết
TP
Xem chi tiết