\(16x^4-8x^2+1=\left(4x^2\right)^2-2.4x^2.1+1=\left(4x^2-1\right)^2\ge0\forall x\)
\(\Rightarrow16x^4+1\ge8x^2\)(1)
\(y^4-2y^2+1=\left(y^2-1\right)^2\ge0\forall y\)
\(\Rightarrow y^4+1\ge2y^2\)(2)
Từ (1) và (2) \(\Rightarrow\left(16x^4+1\right)\left(y^4+1\right)\ge8x^2.2y^2=16x^2y^2\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}4x^2-1=0\\y^2-1=0\end{cases}}\)
Từ đó tìm được \(x=\pm\frac{1}{2},y=\pm1\)
Vậy \(\left(x;y\right)\in\left\{\left(\frac{1}{2};1\right),\left(\frac{1}{2};-1\right),\left(-\frac{1}{2};1\right),\left(-\frac{1}{2};-1\right)\right\}\)
Đúng 1
Bình luận (0)