DH

Giải phương trình:

1, \(\sqrt{4x^2-1}+\sqrt{x}=\sqrt{2x^2-x}+\sqrt{2x+1}\)

2,\(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)

3, \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)

TT
20 tháng 9 2015 lúc 22:39

1. ĐIỀU KIỆN XÁC ĐỊNH \(x\ge\frac{1}{2}.\)

Phương trình tương đương với  \(\sqrt{4x^2-1}-\sqrt{2x+1}=\sqrt{2x^2-x}-\sqrt{x}\Leftrightarrow\frac{2\left(2x^2-x-1\right)}{\sqrt{4x^2-1}+\sqrt{2x+1}}=\frac{2x\left(x-1\right)}{\sqrt{2x^2-x}+\sqrt{x}}\)

Ta có \(x=1\)  là nghiệm. Xét \(x\ne1:\) Phương trình tương đương với \(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\)

Vì \(x\ge\frac{1}{2}\to\sqrt{4x^2-1}+\sqrt{x+1}\le2\sqrt{2x^2-x}+2\sqrt{x},2\left(2x+1\right)>2\times2x\to\)

\(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}>\frac{2\times2x}{2\left(\sqrt{2x^2-x}+\sqrt{x}\right)}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\to\)  phưong trình vô nghiệm.

Vậy phương trình đã cho có nghiệm duy nhất  \(x=1\).

2.  Điều kiện  \(2-x^2>0,x\ne0\Leftrightarrow x\ne0,-\sqrt{2}\)\(

Bình luận (0)