\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\)
\(\Leftrightarrow5x^4+\left(2x+1-2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
có \(\hept{\begin{cases}5x^4\ge0\\\left(\sqrt{2x+1}-1\right)^2\ge0\end{cases}}\)mà \(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\Rightarrow\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=0\\\sqrt{2x+1}=1\end{cases}\Leftrightarrow x=0}\)
vạy x=0 là nghiệm của phương trình
Cre: Đàm Hải Ngọc
cái này dùng liên hợp dễ hơn
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\left(đk:x\ge-\frac{1}{2}\right)\)
\(< =>x\left(5x^3+2\right)-2.\frac{2x+1-1}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2\right)-x.\frac{4}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2-\frac{4}{\sqrt{2x+1}+1}\right)=0< =>x=0\)
giờ dùng đk đánh giá cái ngoặc to vô nghiệm là ok