DH

giải phương trình x + 2015x- 2015x- 2015x + 2014=0.

TL
26 tháng 5 2015 lúc 16:54

Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1

=> vế trái có nhân tử (x - 1)

pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015)  = 0

<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0

<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0

<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0  

<=> x - 1 = 0 hoặc  x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015  = 0

+) x - 1 = 0 <=> x = 1

+) x + 1 = 0 <=> x = -1

+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0 

<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\)   - 2015 = 0

<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)

<=>  \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)

<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)

Vậy pt có 4 nghiệm...

Bình luận (0)
MT
26 tháng 5 2015 lúc 16:56

chính xác nè bạn nhớ sai ruj:

x4+2015x2+2014x+2015=0

<=>x4-x+2015x2+2015x+2015=0

<=>x(x3-1)+2015(x2+x+1)=0

<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0

<=>(x2+x+1)[x(x-1)-2015]=0

<=>(x2+x+1)(x2-x-2015)=0

<=>x2+x+1=0 hoặc x2-x-2015=0

*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0 

<=>(x+1/2)2+3/4=0(vô lí)

*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)

<=>(x-1/2)2-8061/4=0

<=>(x-1/2)2           =8061/4

<=>x-1/2              =\(\sqrt{\frac{8061}{4}}\)

<=>x                    =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PM
Xem chi tiết
DV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết