cho phương trình: \(^{x^2-\left(m-3\right)x-4=0}\)
tìm m để phương trình x1 và x2 thỏa mãn:\(\sqrt{x_1^2+2020}-x1=\sqrt{x^2_2+2020}+x2\)
Giải phương trình: x2+2020\(\sqrt{2x^2+1}\)= x +12020\(\sqrt{x^2+x+1}\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2019]{x}-\sqrt[2019]{y}=\left(\sqrt[2020]{y}-\sqrt[2020]{x}\right)\left(xy+x+y+2021\right)\end{cases}}\)
Giải phương trình : \(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
Giải phương trình : \(\sqrt{x^2-2020x+2019}+\sqrt{x^2-2021+2020}=2\sqrt{x^2-2022x+2021}\)
Giải phương trình
\(\dfrac{1-\sqrt{x-2019}}{x-2019}+\dfrac{1-\sqrt{y-2020}}{y-2020}+\dfrac{1-\sqrt{z-2021}}{z-2021}+\dfrac{3}{4}=0\)
Giải phương trình \({\sqrt{2020-x}+\sqrt{x-2018}}={x^2-4038x+4076363}\)
giải phương trình: \(\sqrt{x^2-2x+5}\)=x2-2x-1