\(x^2-x+\sqrt{x+1}-8=0.\)(1) ĐK: x >= -1
Đặt: \(t=\sqrt{x+1}\mid t\ge0\)
\(x=t^2-1\)\(x^2=\left(t^2-1\right)^2=t^4-2t^2+1\)Thay vào (1):
(1) \(\Leftrightarrow t^4-3t^2+t-6=0\)
\(\Leftrightarrow t^4-4t^2+t^2-2t+3t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2+t+3\right)=0\)(*)
Vì t>=0 nên t3 + 2t2 + t + 3 >0 với mọi t
(*) \(\Leftrightarrow t-2=0\Rightarrow t=2\)
\(\sqrt{x+1}=2\Rightarrow x=3\)(TMĐK >= -1)
Vậy, PT có nghiệm duy nhất x = 3.