\(x^2-x+8=4\sqrt{x+3}\)đk : x >= -3
\(\Leftrightarrow x\left(x-1\right)+8-4\sqrt{x+3}=0\)
Đặt \(\sqrt{x+3}=t;\Rightarrow x+3=t^2\Leftrightarrow x=t^2-3;x-1=t^2-4\)
khi đó : \(\left(t^2-3\right)\left(t^2-4\right)+8-4t=0\)
\(\Leftrightarrow t^4-7t^2+20-4t=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2-3t-10\right)=0\)
\(\Leftrightarrow t=2;t=\frac{-4+2i}{2}\left(loại\right);\frac{-4-2i}{2}\left(loại\right)\)
Theo cách đặt \(\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)
xin vui lòng giúp em, em rất rất gấp!!