(x+1)(x+2)(x+4)(x+8)=28x2
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+9x+8\right)=28x^2\)(1)
Thấy x=0 không là nghiệm của (1). CHia 2 vế (1) cho x2 ta đc:
\(\left(1\right)\Leftrightarrow\left(x+\frac{8}{x}+6\right)\left(x+\frac{8}{9}+9\right)=28\)
Đặt \(t=x+\frac{8}{x}\)ta có:
\(\left(1\right)\Rightarrow\left(t+6\right)\left(t+9\right)=28\)
\(\Leftrightarrow t^2+15t+26=0\Leftrightarrow\orbr{\begin{cases}t=-2\\t=-13\end{cases}}\)
Với \(t=-2\Rightarrow x+\frac{8}{x}=-2\Leftrightarrow x^2+2x+8=0\Leftrightarrow\left(x+1\right)^2+7>0\)(vô nghiệm)Với \(t=-13\Rightarrow x+\frac{8}{x}=-13\Rightarrow x^2+13x+8=0\)\(\Delta=13^2-4\left(1.8\right)=137\)\(\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)(thỏa mãn)
Vậy...