TM

giải phương trình: \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

HV
9 tháng 8 2019 lúc 10:29

bình phương lên đi bạn

Bình luận (0)
NC
9 tháng 8 2019 lúc 11:28

ĐK:  x >= -1

Bình phương hai vế ta có:

\(x+1+2\sqrt{\left(x+1\right)\left(x+10\right)}+x+10=x+2+2\sqrt{\left(x+2\right)\left(x+5\right)}+x+5\)

Rút gọn

\(2x+11+2\sqrt{\left(x+1\right)\left(x+10\right)}=2x+7+2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(4+2\sqrt{\left(x+1\right)\left(x+10\right)}=2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(2+\sqrt{\left(x+1\right)\left(x+10\right)}=\sqrt{\left(x+2\right)\left(x+5\right)}\)

Bình phương hai vế 

\(4+4\sqrt{x^2+11x+10}+x^2+11x+10=x^2+7x+10\)

\(\Leftrightarrow4\sqrt{x^2+11x+10}+4x+4=0\)

\(\Leftrightarrow\sqrt{x^2+11x+10}+x+1=0\)  ( đến đây bạn có thể chuyển x+1 sang vế khác đặt điều kiện rồi bình phương hai vế cũng có thể làm theo cách dưới như của mình)

Mà \(x\ge-1\)

khi đó: \(\sqrt{x^2+11x+10}+x+1\ge0\)

Dấu "=" xảy ra <=> x=-1 thỏa mãn

Vậy x=-1

Bình luận (0)