Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

QL

Giải phương trình :

\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

H24
19 tháng 9 2019 lúc 14:04

\(\hept{\begin{cases}\sqrt{x-7}+\sqrt{9-x}\le\sqrt{2\left(x-7+9-x\right)}=2\\x^2-16x+66\ge2\end{cases}}.Dau"="?\)

Bình luận (0)
NC
19 tháng 9 2019 lúc 14:35

ĐK: \(7\le x\le9\)

Áp dụng bunhiacopxki ta có:

\(\left(1.\sqrt{x-7}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-7+9-x\right)=4\)

=> \(\sqrt{x-7}+\sqrt{9-x}\le2\)(1)

Mặt khác: \(x^2-16x+66=x^2-2.x.8+64+2=\left(x-8\right)^2+2\ge2\)

=> \(x^2-16x+66\ge2\)(2)

Từ (1) và (2) ta có: \(\sqrt{x-7}+\sqrt{9-x}\le x^2-16x+66\)

Dấu "=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}x^2-16x+66=2\\\sqrt{x-7}+\sqrt{9-x}=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-8\right)^2=0\\\frac{\sqrt{x-7}}{1}=\frac{\sqrt{x-9}}{1}\end{cases}\Leftrightarrow}x=8\) ( tm đk)

Vậy x = 8.

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết