Đặt \(\sqrt[3]{x+45}=a\Rightarrow a^3=x+45\)
\(\sqrt[3]{x-16}=b\Rightarrow b^3=x-16\)
Ta có:\(\hept{\begin{cases}a-b=1\\a^3-b^3=61\end{cases}\Rightarrow\hept{\begin{cases}b=a-1\\\left(a-b\right)^3+3ab\left(a-b\right)=61\end{cases}}}\)
\(\Rightarrow1+3a\left(a-1\right)=61\) (vì a-b=1)
\(\Leftrightarrow a^2-a-20=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5\\a=-4\end{cases}\Rightarrow\orbr{\begin{cases}a^3=125\\a^3=-64\end{cases}\Rightarrow}\orbr{\begin{cases}x=80\\x=-109\end{cases}}}\)
Vậy nghiệm của pt là: x=80;x=-109