H24

giải phương trình \(\sqrt[3]{x^2+3x+3}\)+\(\sqrt[3]{2x^2+3x+2}\)=6x2+12x+8

TL
22 tháng 9 2020 lúc 20:41

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

Bình luận (0)
 Khách vãng lai đã xóa
TL
22 tháng 9 2020 lúc 20:43

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
LL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
MB
Xem chi tiết
PV
Xem chi tiết
TY
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết