\(ĐKXĐ:x\ge-\frac{1}{2}\)
Đặt: \(\sqrt{2x+1}=a\left(a\ge0\right)\)và \(\sqrt{4x^2-2x+1}=b\left(b>0\right)\)
Phương trình đã cho được viết dưới dạng:
\(a+3b=3+ab\Leftrightarrow\left(1-b\right)\left(a-3\right)=0\)
\(b=1\Rightarrow\sqrt{4x^2-2x+1}=1\Leftrightarrow4x^2-2x=0\)\(\Leftrightarrow2x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
\(a=3\Rightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\)\(\Leftrightarrow x=4\left(tmđk\right)\)
Vậy phương trình có \(n_0S=\left\{0;\frac{1}{2};4\right\}\)