HP

Giải phương trình \(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\)

TL
1 tháng 5 2020 lúc 12:17

\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)

ĐK -3 =<x =<29

Với mọi a,b >=0 ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:

\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)

\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)

\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)

Do đó (1) <=> x=13 (tm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
PB
Xem chi tiết
FF
Xem chi tiết
TV
Xem chi tiết
YY
Xem chi tiết
DT
Xem chi tiết
VC
Xem chi tiết
NV
Xem chi tiết
HP
Xem chi tiết