Điều kiễn xác định của phương trình : \(2008\le x\le2010\)
Xét vế trái của phương trình và áp dụng bất đẳng thức Bunhiacopxki : \(\left(1.\sqrt{2010-x}+1.\sqrt{x-2008}\right)^2\le\left(1^2+1^2\right)\left(2010-x+x-2008\right)=4\)
\(\Rightarrow\sqrt{2010-x}+\sqrt{x-2008}\le2\)(1)
Xét vế phải của phương trình : \(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\)(2)
Từ (1) và (2) ta có phương trình đầu tương đương với \(\hept{\begin{cases}\sqrt{2010-x}+\sqrt{x-2008}=2\\x^2-4018x+4036083=2\end{cases}\Leftrightarrow}x=2009\) (TMĐK)
Vậy phương trình có nghiệm x = 2009